
DEEP LEARNING RESULTS

INTRODUCTION

• Statistical learning (SL) helps us learn about temporal/spatial 
patterns in our environment. E.g. word segmentation in speech1, 
visual regularities2

• One previous fMRI study3 found that items strongly bound via SL 
showed more similar patterns of brain activity after learning, 
compared to before learning. However, it is unclear what 
underlying neural processes drove this effect

• The greater temporal resolution of EEG may allow us to detect 
prediction signals during SL that are not apparent with fMRI
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TASK DESIGN & STIMULI

• 3 item categories used: Face, Scene, Object
• Unbeknownst to participants, all items were part of a pair
• Pairs balanced across item categories
• Images presented onscreen for 1000ms each
• Cover task: press button when an item jiggles (infrequent)
• EEG data collected on 256-channel EGI system
• N = 17 young, healthy subjects

• Administered 5 minutes after main task completion
• 3 types of pairs presented: Strong pairs (TP 100%); Weak pairs 
(TP 11%); Foil pairs (TP 0%)
• Rated pair familiarity using sliding scale
• Strong pairs rated more familiar than weak pairs (p = .049) and 
foil pairs (p = .028)
• No difference between foil pairs and weak pairs (p = .937)

STRONG PAIRS (predictive)

Transitional Probability 1.0

Item B followed Item A 100% 
of the time

WEAK PAIRS (non-pred.)

Transitional Probability 1/9

Item D followed Item C 11% 
of the time
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POST-TASK LEARNING TEST
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CLASSIFY: UPCOMING ITEM    
(face/scene/obj; chance = 33.3%)

Leading items

CLASSIFY: PRECEDING ITEM 
(face/scene/obj; chance = 33.3%)

Trailing items

Item % acc

Strong faces 32.2

Strong scenes 35.5*

Strong objects 37.3**

Weak faces 34.1

Weak scenes 32.6

Weak objects 33.0

CLASSIFY: PAIR TYPE  
(strong/weak; chance = 50%)

Item % acc

Leading faces 49.6

Leading scenes 51.5**

Leading objects 50.1

Trailing faces 49.1

Trailing scenes 50.1

Trailing objects 51.4*

Item % acc

Strong faces 50.2

Strong scenes 51.9**

Strong objects 50.9

Weak faces 48.3

Weak scenes 51.7**

Weak objects 48.8

CLASSIFY: ITEM ORDER  
(leading/trailing; chance = 50%)

Item % acc

Strong faces 38.6**

Strong scenes 36.0**

Strong objects 34.1

Weak faces 36.4**

Weak scenes 36.2**

Weak objects 35.5*

CONCLUSIONS

• Some evidence that the EEG signal of learned (strong) items 
can be detected prior to their presentation, i.e. during item that 
predicts them

• Deep learning models may be able to detect effects that 
traditional ERP analyses cannot easily

one-sample t-test against chance: * p < .05; ** p < .001

ANALYSIS METHODS

• Trials binned by: pair type (strong/weak) x item order 
(leading/trailing) x leading item category (face/scene/object) x 
trailing item category (face/scene/object)

• ERPLAB used for EEG preprocessing. 256-channel system 
converted to 10-10 system by averaging across electrode groups

• Convolutional neural network model run on ERP data classifying 
item category; trials that were correct <50% of the time removed
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